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Abstract A technique for measuring the psychophysiological
status of the human and associated applications based on
normal brain signals are examined and evaluated. A small
single-point dry electrode developed for mobile use can
capture brainwave activity from among dense external and
internal electrical noise, and subsequently extract targeted
frequency components. Continuous measurements during day
and night provide a brainwave profile including wake and sleep
states that can consistently explain states of human awareness.
Statistical evaluation provides psychophysiological state
change patterns which can be used to distinguish levels of
alertness so as to prevent or avoid hazardous situations. We
have taken a typical daily activity, namely, driving a car, to
examine the applicability of our proposed method. Test results
in terms of brain wave state show that the pattern while driving
is changed by specific activity such as when talking on a
mobile phone. J Physiol Anthropol 28(3): 145-150, 2009
http://www.jstage.jst.go.jp/browse/jpa2
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Introduction

Brain activity is an essential key to understanding the
psychophysiological states of humans. Using non-invasive
electroencephalograms (EEG) with a dry electrode at the
forehead, brain states can be measured and analyzed without
complex medical procedures. Although the brain is the most
complex organ, advancements in brain science have produced
theories on the relationships between brainwave characteristics
and psychophysiological states. The challenge is to consolidate
accurate measurements to capture subtle signals using simple
instrumentation, then interpret the data into meaningful
signatures. Presuming such applications are used during
everyday activities, a small and lightweight sensor system must
be developed and applied for testing.

With the advancements of brain science, fMRI (Functional

Magnetic Resonance Imaging) or infrared spectroscopes
provide accurate interpretation of brain activity on brain
nerve location (Haruno et al., 2004). This requires massive
instrumentation and places several constraints on the subject.
The conventional multi-point EEG requires a special headset
and electrolyte gel that is unpleasant, which may lead to
discomfort and result in the collection of erroneous data if
applied during normal daily activity. Therefore, a lightweight,
dry single-point EEG contact needs to be developed to solve
this problem.

An EEG is easily affected by electrical potentials generated
by muscle contractions (Quiroga, 2006). Using a single-point
EEG sensor to observe electrical potentials, it is difficult to
completely segregate brainwaves from these electrical signals.
However, from a physiological viewpoint, an irritation or
nervous condition can be detected by observing rapid muscle
movement of the eyes or facial tissues. Therefore, if it is
possible to establish a rational interpretation for an input that
includes a mix of brainwave and signals created by muscle
movement for recognizing a certain physiological state, the
EEG measurement will become more common in normal daily
life.

The first attempt to understand the capability of the method
is to determine sensor output during wake and sleep states, two
different psychophysiological states of the brain.

The proposed measurement system and statistical approach
are examined to differentiate sleep/awake states. Rapid Eye
Movement (REM)-nonREM sleep cycles (Aserinsky and
Kleitman 1953) are also discussed in terms of detection
capability by this approach.

This exploratory exercise is to extract a signature that can be
used as a precursor for hazard detection and prevention, as
demanded by activities, such as driving a car, that require
several concurrent brain states, including concentration,
relaxation, focus, and alertness (Harada et al., 2007).

A small wearable single-point EEG probe, along with a
mobile device are ideal for conducting such measurements
while driving or performing in other real life situations. The
absolute magnitude of brainwaves measured by an EEG sensor
varies with time, sensor location, and skin condition. The
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consideration is therefore to analyze a portion of each
frequency component during each time period, with the
assumption being that dominant frequency components can
represent certain brain states. If frequency characteristics based
on that assumption can match physiological state recognition,
a single-point mobile EEG sensor becomes an effective
monitoring probe for real-life application. The capability of
this method is examined by monitoring subjects throughout the
course of a day and extracting crucial information towards
realizing the stated objective.

Method

The EEG sensor (ThinkGear, NeuroSky, CA, USA) used for
this test consisted of a pea-sized (10 mm diameter) active
electrode and reference electrode to measure the electrical
potential of the two points. The electrical potential is supplied
directly to the embedded chipset for analog filtering with band
pass and notch filters and 128 KHz digital sampling at A/D
converter. The digitized data are analyzed by FFT in the
headset circuit board to produce the power value of each
frequency component and the results are transmitted to the cell
phone. Using the on-board computation and signal process
circuitry, the unit can acquire highly sensitive brainwave data
without being contaminated by noise. The sensor is attached to
the head of the subject with a common headband apparatus, as
shown in Fig. 1. A photograph of the headset is presented in
Fig. 2. The electrode and electronics for data processing have a
barely noticeable weight in addition to the fabric headband.
Much of the weight is dominated by the Bluetooth unit and its
battery. The reference is taken at the lobe and the circuitry is
also loaded on the headband. Data are captured and presented
in each frequency band: Delta (0-3 Hz), Theta (4-7 Hz), Alpha
(8-12Hz), Low Beta (12-15Hz), Mid Beta (16-20Hz) and
High Beta (21-30 Hz) every two seconds.

The system monitors electrical potential between the active
and reference electrodes which are attached on the forehead
and the earlobe, respectively. To minimize discomfort and
interference with natural movement and behavior, data were
transmitted via wireless connection by Bluetooth and stored
in the memory of a cell phone located beside the subject
anywhere Bluetooth can be connected wirelessly to the headset
unit. Due to limited battery life, measurements were
temporarily halted within 8 hours to allow battery replacement
or recharging. Alternative systems requiring less power can
also be substituted for Bluetooth.

The output from the EEG sensor is subjected to frequency
component analysis. Although the extracted data represent the
electric potential difference between active and reference
electrodes, its amplitude does not have a special meaning.
However, analysis to examine the power ratio of the frequency
component to total power can show which frequency range is
dominant at the time the data are taken.

Since frequency component analysis often suffers from high
electrical activity including ocular artifacts (OA), especially
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Fig. 1 Measurement instrumentation illustration showing the headband
implementation of sensor nodes, electric circuitry, and wireless
transmitter.
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Fig. 2 Picture of the headset instrumentation.
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Fig. 3 Absolute magnitude of the signals during long-term

measurement.

higher frequency components have less amplitude and hide in
statistics, we eliminated excessive large responses of more than
2 sigma variation of the amplitude as artifacts in these tests.
The amplitude distribution is presented in Fig. 3.

Although several methods are proposed (Hass et al., 2003;
Krishnaveni et al., 2006), it is difficult to separate artifacts
such as OA from EEGs completely. In a series of
measurements, even ignoring a small number of data which
exhibit excessive responses supposedly by the artifact
contaminated, since the measurement is focusing on the
frequency components continuously being produced in the
psychophysiological state, the statistical representation by
the rest of the data can exhibit the gross characteristics of
the state. The comparison based on the frequency component
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ratio is also less vulnerable than absolute values, which are
contaminated by ambient and body-induced noise.

Attempting to adopt a statistical approach with the data in a
certain time period is to understand the physiological status
signature, which, in general changes slowly (Hastings, 1998;
Louise et al., 2007), rather than to find mind orientations by
collecting specific brain waves. The evidence sought here will
be a series of brain activities which differentiate certain
physiological states in the exposure of a specific situation or
when engaging in an activity such as driving a car.

Results

Two types of tests are chosen to examine the applicability to
real life measurement of brain waves. The first attempt is a
continuous measurement during normal life including night-
time sleep. The other is a specific application for car driving.
For the continuous measurement, the subject is a male student
aged 22. The measurements were done on a normal college
day and that night. For car driving, the subject is a male aged
30, who has 10 years’ driving experience. Since the purpose of
this paper is to show the measurement methodology and
feasibility, the typical test results are presented.

Continuous measurement in a student s normal life

The result of daytime measurements is graphically shown in
Fig. 4. This exhibits a slow cycle that transitions from higher
frequency dominance; around 10:30 to 12:00, to lower
frequency dominance; around 13:00 to 15:00, and again back
to higher frequency; around 15:00 to 17:00. Observing the
subject’s daily activity, it represents an active morning,
followed by a lunch break, return to afternoon work, bouts of
drowsiness, and a second wind in the late afternoon. The
subject reported his awareness during the test at the post-test
interview. That indicated concentration in the morning class,
relaxation during lunch, being somewhat drowsy at the
beginning of the afternoon class, then concentration in the later
class, and relaxation again after school enjoying conversation
with friends to the end of the measurement period.

The results of night-time measurements while the subject
slept are shown in Fig. 5. Lower frequency components occupy
major portions of the sleep period. Also, the active high-
frequency components were observed every two to three hours
in Fig. 5. The research of sleep state including REM/nonREM
is one of the potential applications.

Data vulnerability against noise and artifacts is one issue
that requires addressing. Noise characteristics can be defined
by ambient measurements without mounting the sensor to the
forchead. The measurement output is continuously monitored,
including the sensor-dismounting period. A none-specific
frequency dominant random distribution characteristic is
shown after 13:00 in Fig. 6, where the sensor was detached
from the head. The frequency distribution is apparently
different when compared with Fig. 4, which doesn’t have a
sensor-detached period. At 15:30 the sensor was placed back
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Fig. 4 Brain wave frequency component distribution of the daytime
measurement, showing the dominance relative to the total power.
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Fig. 5 Brain wave frequency component distribution of the measurement

during night time including sleep, showing the dominance relative to
the total power.
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Fig. 6 Brain wave frequency component relative distribution of the
measurement with detached sensor during 13:00-15:30, showing the
dominance relative to the total power.

on the forehead, and the signal shows a similar frequency
component distribution pattern to that observed before the
detachment.

From collecting data in the continuous measurements, it can
be assumed that the frequency component distribution pattern
of the EEG measurement can reveal obvious differences during
the daily activities in a relative fashion, although brain wave
signals are weak, masked by noises or muscle movement,
and show variations depending on sensor locations and
surrounding conditions.

Car driving

The activity for driving a car can elicit various brain
responses, such as nervousness, concentration, relaxation,
focus, and sometimes drowsiness. Especially if we can extract
an unusual condition and create a specific frequency-dominant
component, it can be useful for early notification of a specific
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condition and/or for hazard prevention.

To check how the brain wave sensor signal is exhibited
during normal driving measurements are first taken for several
hours of driving. It may be difficult to correctly extract a
certain difference during the driving period since several
types of stimuli may induce a variety of signals reflecting
concentration, relaxation, tension, or a combination of them.
Therefore, frequency component distribution during the entire
driving period is observed and then compared with a typical
driving occasion. We selected a phone conversation as a typical
event that would interrupt the concentration level of the driver
(Parkes et al., 2007; Redelmeier and Tibshirani, 1997). The
driver was monitored to determine whether the phone call
changed the brain wave patterns. It may be possible by
monitoring driving performance in the interruption, but this
introduces a number of variables, such as driver’s skill, driving
scenario, and difficulties, that complicate the evaluation
process and results. This lightweight wearable dry EEG sensor
and monitoring system can minimize the driver’s level of
discomfort, which can cause an additional stimulus to the brain
activity and deteriorate the data.

To ensure that the test scenario represents normal driving
conditions, reference data were collected on public roads. For
safety reasons, the driver talked with a hands-free device.
Although excluding handheld talking for this test, which is a
matter of public concern, certain accident research (McEvoy et
al., 2005) has indicated no difference between handheld and
hands-free devices. Data for 20 minutes were sampled for the
interval to ensure the statistical significance of the data. To
clarify the brain state change, the consecutive data of pre- and
post-intervals of the phone conversation were measured.

The Alpha frequency components and Beta frequency
component ratio were used to examine the mental
concentration level change. In this calculation, three Beta
components were combined into a 12-30 Hz single component
in equally balance with Alpha to avoid a numerical calculation
truncation error.

The data in Table 1 indicate that cellular phone
conversations during driving produce a different signature
for the Alpha frequency component and Beta frequency
component ratio. Two tests show the same trend. The Student
t-tests show statistically significant differences between paired
test data as shown in Table 2. The difference of degrees of
freedom is due to the extreme data elimination mentioned
above and the contingency such as discontinuation as the result
of a traffic jam. The p-value between the pre- and post-data of
the second test shows p=>0.5. This implies that there is no
significant difference in driving condition between the pre- and
post-data in terms of brain activity. Even though the first test
shows some difference between the pre- and post-data
supposedly due to the different number of measurement
points, the p-value paired with pre- and post-data shows a
much greater similarity than when paired with the phone
conversation data, which is the same as the second test.

Driving while talking on the phone seems to suppress the

Table 1 Comparisons of Alpha/Beta power ratio between normal driving
and driving with cell-phone talking from 20 minutes’ consecutive

measurement
Tested conditions Samples Mean S.D:
1-1 608 0.7252 0.6836
1-2 605 1.2935 0.9618
1-3 258 0.8990 0.6873
2-1 636 0.5706 0.4873
2-2 621 0.7343 0.6095
2-3 610 0.5864 0.5858

1-1: Pre 20 minutes driving, First test.

1-2: 20 minutes driving with phone call, First test.
1-3: Post 20 minutes driving, First test.

2-1: Pre 20 minutes driving, Second test.

2-2: 20 minutes driving with phone call, Second test.
2-3: Post 20 minutes driving, Second test.

S.D.: Standard Deviation.

Table 2 Results of the significance of differences by Student t-test
between with/without cell-phone talking: t-value is conditioned by
unequal samples and unequal variance

Tested conditions t-value d.f. p-value
(1-1) vs (1-2) 11.90 1089 Pp=<0.000000
(1-2) vs (1-3) 6.81 667 P<0.000000
(1-1) vs (1-3) 3.41 482 p=0.000704
(2-1) vs (2-2) 5.30 1195 £<0.000000
(2-2) vs (2-3) 4.30 1228 p=0.000018
(2-1) vs (2-3) 0.51 1195 p=0.610146

d.f.: degrees of freedom.

output of Alpha frequency components versus Beta frequency
that is different from normal driving, in which several
situations create a variety of frequency components. It can be
conceived that the actual content of the conversation may also
cause different brain frequency patterns. Although these issues
are not addressed in this paper, we suppose the 20 minutes is
long enough to express a variety of content and makes the
conversation an average and standard phone conversation.

Discussion

Although the system is exposed to white noise acting
equally over the entire frequency range, as observed in Fig. 4
and Fig. 6 when the sensor is detached from the head, the
method based on the relative dominance of each component
can cancel this effect out.

Muscle contractions may affect specific frequencies in
brainwaves. However, if registered as an enduring constant
cyclical motion, it may also be dealt with as a physiological
signature, since it is produced by an evoked event. For
instance, assuming that REM sleep exhibits high frequency
components created by brainwaves and OA, the result of the
frequency power density ratio analysis shows specific pattern
changes, which can be used for sleep state analysis including
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REM and nonREM sleep cycles. The small instrumentation
and method developed here enable natural sleep monitoring
without any inconvenience. More instrumentation and analysis
may be necessary to examine the detailed diagnostic of sleep
conditions, but for sleep pattern recognition this provides a
monitoring capability.

Not only pertaining to the sleep state, the day-long
monitoring shows a certain profile exhibiting physiological
brain state changes in normal life. The result shows that the
proposed measurement technique obviously exhibits frequency
component dominance change. During a student’s regular
school day, higher frequencies dominated in the morning class,
more low frequencies were shown after lunch, higher
frequencies came back in the afternoon class and higher
frequencies recede when school is dismissed.

Rather than capturing instantaneous brainwave signals and
diagnosing them, we chose to monitor over a certain time
period the distribution and dominance of the frequency
components to find a statistical signature from a shift in
frequency characteristics. In that sense, the goal of this
measurement is to recognize brain-induced signals which can
be evaluated to differentiate psychophysiological states when
examining the level of mental fitness for each human activity.

For car driving, what can be observed is that the driver
exhibits and repeats a different signature when using a cell
phone during driving, creating higher frequency components
data, the frequency of which are related to awareness and
alertness in brainwaves. It is expected that these results support
the long-held belief that using a phone while driving is a
potential hazard.

Further measurements and comprehensive analysis are
necessary to consolidate the overall applicability of this
method towards multiple events and subjects. However, our
results indicate that the subject’s brain activity is overwhelmed
by using the telephone while driving. The quantification of
driving danger and the associated brain state is beyond the
scope of this paper and may require a more direct evaluation. It
is noted, however, that this evaluation does not delve into a
person’s ambiguous feelings or performance level, but
addresses only the notion that brain signals may indicate
essential signatures that govern human activity.

The test instruments and methodology implemented here
can be extended to several applications to further understand
human interaction while driving. For example, it can be used
for automotive or transportation facility design to circumvent
stressful situations. Since the system only requires a small
sensor placed on the forehead and a wearable circuit that
transmits data wirelessly, it can easily be applied to driving
tests without causing any discomfort or physical constraints
that may deteriorate the results.

In conclusion, the noninvasive noise-controlled single-
channel dry sensor was able to extract brainwave signal
components at various frequency bands. The data become
more expressive after applying statistical processes than just by
focusing on instantaneous responses. The mobility of the

system achieved effortless measurements during normal daily
life without constraints, extending measurement possibilities
and directly bridging biological signals and normal human
behavior. Applied specifically to driving a vehicle, the data
showed an obvious pattern change when a mobile phone was
introduced, even though the measurements are limited. We
expect this neuroscientific approach will assume a useful role
in assessing normal daily human activities, especially for
matters of public concern including the risk associated with
driving while talking on a phone. The tiny, wearable brainwave
sensor and its system will provide further information through
real-time life measurements and related applications.
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